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Abstract

A number of studies have suggested that Vitamin D has a potential role in the development/treatment of diabetes. These effects may
be mediated by circulating levels of 1�,25(OH)2D3, but local production of 1�,25(OH)2D3, catalysed by the enzyme 25-hydroxyvitamin
D3-1�-hydroxylase (1�-OHase), is also likely to be important. RT-PCR analyses demonstrated that both isolated rat islets and MIN6 cells
(mouse insulin-secreting cell line, characteristic of� cells) expressed 1�-OHase mRNA. The transcript in both cell types was similar to
that seen in HKC-8 cells (a renal cell line, which expresses 1�-OHase). Western blot analysis and immunolocalisation identified 1�-OHase
protein in MIN6 cells and human pancreatic tissue. In addition, suspensions of rat islets were able to convert [3H]-25-hydroxyvitamin D3 to
[3H]-1�,25(OH)2D3, demonstrating 1�-OHase activity. Both cell systems expressed the Vitamin D receptor and 1�,25(OH)2D3 (50 nM)
evoked a rapid rise in [Ca2+]i in MIN6 cells. This data clearly demonstrates islets are able to produce 1�,25(OH)2D3 and respond rapidly
to treatment with 1�,25(OH)2D3. Therefore, we would postulate that local production of 1�,25(OH)2D3 maybe an important autocrine
link between Vitamin D status and pancreatic function.
© 2004 Elsevier Ltd. All rights reserved.

Keywords:25-Hydroxyvitamin D3-1�-hydroxylase; Vitamin D; 1�,25-Dihydroxyvitamin D3; Islets; Diabetes; Calcium

1. Introduction

A number of in vitro and in vivo studies have indicated
that Vitamin D may have a role in normal pancreatic func-
tion and the prevention/treatment of diabetes. Vitamin D
deficient rats secrete insufficient insulin in response to a
glucose challenge. Insulin secretion and� cell function
is restored following correction of Vitamin D levels[1,2].
Recent data from two studies in Scandinavia have sug-
gested a link between Vitamin D supplementation during
pregnancy and protection of the offspring from type 1
diabetes[3,4]. However, the mechanism by which Vita-
min D influences islet cell function is as yet unknown.
Islets have been shown to express the Vitamin D recep-
tor (VDR) and a Vitamin D response element has been
recently identified in the human insulin receptor gene pro-
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moter [5,6]. Polymorphisms in the VDR have been linked
with both type 1 and type 2 diabetes[7,8] and insulin se-
cretion is impaired in the VDR KO mouse[9].Some of
the actions of Vitamin D may be due to circulating lev-
els of 1,25-dihydroxyvitamin D3 (1�,25(OH)2D3), but it
is becoming increasingly apparent that local production of
1�,25(OH)2D3 is important, where it may regulate tissue
function in a paracrine or autocrine fashion. Synthesis of
1�,25(OH)2D3 from 25(OH)D3 is catalysed by the mi-
tochondrial cytochrome P450 enzyme 25-hydroxyvitamin
D3-1�-hydroxylase (1�-OHase). Although classically lo-
cated in the kidney, it is now known that 1�-OHase is
expressed in a number of extra-renal tissues[10]. Addi-
tionally, polymorphisms in the Vitamin D binding protein
have also been linked to type 2 diabetes[11] and this
may indicate a decreased supply of 25(OH)D3 to the pan-
creas. To examine the expression of 1�-OHase we studied
isolated rat islets. We also utilised the mouse insulinoma
cell line, MIN6, which is an insulin secreting cell line
with characteristics similar to� cells and isolated islets
[12].
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2. Materials and methods

2.1. Cell culture

Rat islets were isolated following standard collagenase di-
gestion. MIN6 cells (passage 38–44) and HKC-8 cells were
maintained as previously described[13,14] For immunocy-
tochemistry and microfluorimetry cells were seeded onto
3-aminopropyltriethoxysilane-coated glass coverslips.

2.2. Measurement of 1α-OHase activity

1�-OHase activity was assessed by incubating rat islets
with 3.75 nM [3H]-25(OH)D3 for 4 h and 37◦C. Analysis of
1�,25(OH)2D3 production was performed using previously
validated thin layer chromatography methods[14].

2.3. RNA extraction and RT-PCR

RNA was prepared using the GenElute Mammalian total
RNA Kit (Sigma) according to the manufactures protocol.
Reverse transcription (RT) of 1�g of total RNA was per-
formed using a Promega System. PCR primers specific for
1�-OHase and VDR were used[15,16].

Fig. 1. Expression of 1�-OHase and VDR mRNA and protein in pancreatic islets. (A) Immunohisto-chemical analysis (IHC) of 1�-OHase. (B) IHC
analysis of insulin in sections of human pancreata (positive staining brown, both X200). RT-PCR analysis indicated 1�-OHase and VDR mRNA in rat
islets (C and D) and HKC-8 and MIN6 cells (E and F), respectively. Western blot analysis of protein confirmed the presence of 1�-OHase and VDR
protein in both cell lines (G and H).

2.4. Western blot analyses and immunolocalisation

Total cell lysates were subjected to SDS-PAGE (5�g
per lane) and electroblotted onto Immobilon P membrane
as described previously[14]. Filters were analysed with
specific polyclonal antibodies against the human VDR
(Cambridge BioScience, UK) and the mouse 1�-OHase
(The Binding Site Ltd., UK). Proteins were detected by
enhanced chemiluminescent (Amersham). Immunohisto-
chemistry and immunocytochemistry were performed using
standard techniques[10,17]. Proteins were visualised by
3,3′diaminobenzidine or Alexa fluorescent secondary anti-
bodies.

2.5. Single-cell microfluorimetry

MIN6 cell clusters were loaded with the Ca2+-fluorophore
Fura-2/AM (2.5�M, 20 min, 37◦C). Experiments were car-
ried out as previously described[18]. Cells were illuminated
alternatively at 340 and 380 nm using Metafluor Imaging
Workbench (Universal Imaging Corp. Ltd., Marlow Bucks,
UK). Emitted light was filtered using a 510 nm long-pass
barrier filter and detected using a CoolSnap HQ CCD cam-
era (Roper Scientific). Changes in the emission intensity of
Fura-2 expressed as a ratio of dual excitation were used as
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an indicator of changes in [Ca2+]i , using established pro-
cedures[19]. Data were collected every 3 s for multiple
regions of interest in any one field of view. All records
have been corrected for background fluorescence (deter-
mined from cell-free coverslip).

3. Results

3.1. Expression of 1α-OHase

Initial studies confirmed the expression of 1�-OHase pro-
tein in human pancreas, which was coincident with the
expression of insulin (Fig. 1A and B). Further studies in
isolated rat islets and MIN6 cells demonstrated 1�-OHase
mRNA (Fig. 1C and E). RT-PCR revealed a similar size
transcript to that seen in HKC-8 cells, a human proximal
convoluted tubule cell line known to express 1�-OHase
mRNA and protein[15]. Immunocytochemistry and western
blot analysis demonstrated 1�-OHase protein expression in
MIN6 cells (Figs. 1G and 2B). Although both 1�-OHase
and insulin expression were cytoplasmic, profile data of the

Fig. 2. Immunocytochemical analysis of 1�-OHase and insulin in MIN6 cells. (A) cells stained with DAPI indicating the nucleus. (B) Indicates positive
staining for 1�-OHase. (C) Demonstrates insulin. Panels A,1; B,1 and C,1 are profile data of the intensity of fluorescence for DAPI, 1�-OHase and
insulin staining, respectively and indicate that 1�-OHase and insulin are cytoplasmic, but not co-localised.

intensity of fluorescence suggested that expression did not
overlap (Fig. 2). Analysis of [3H]-25(OH)D3 metabolism by
intact rat islets demonstrated production of 1�,25(OH)2D3.
Basal enzyme activity was calculated as 45± 12 (S.E.M.)
fmoles of 1�,25(OH)2D3 produced per hour per 1000 islets.
Further RT-PCR analysis demonstrated expression of VDR
in rat islets and MIN6 cells (Fig. 1D and F). Immunocyto-
chemistry (data not shown) and western blot analysis con-
firmed expression of VDR protein in MIN6 cells (Fig. 1H).

3.2. The effect of 1α,25(OH)2D3 on cytosolic calcium
([Ca2+] i) in insulin-secreting cells

At basal glucose concentrations (2 mM) the acute appli-
cation of 1�,25(OH)2D3 (50 nM) evoked a marked rise in
[Ca2+]i (22/33 cells (67%) from four separate experiments)
(Fig. 3). The response was slow in onset, with a delay be-
tween application of the agonist and the initial rise in [Ca2+]i
of 148± 21 s (mean± S.E.M.) (n = 22 responsive cells).
The response persisted beyond the removal of the stimulus
in greater than 60% of the responsive cells examined. The
amplitude of the 1�,25(OH)2D3-evoked change in [Ca2+]i
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Fig. 3. 1�,25(OH)2D3 elevated [Ca2+]i in insulin-secreting cells. The response was slow in onset, but once initiated persisted in the continued presence
of the agonist. The sulphonylurea tolbutamide elicited a characteristic rapid increase in [Ca2+]i that oscillated above a mean elevated plateau.

0.19 ± 0.02 (mean± S.E.M.) (n = 22 responsive cells)
was 59% of that evoked by the sulphonylurea tolbutamide
(100�M; 0.32± 0.03 (mean± S.E.M.) (n = 9 responsive
cells),P < 0.05 (unpairedt-test).

4. Discussion

Previous studies have clearly suggested that Vitamin D
may have an important role in the normal function of pancre-
atic islets. Although the mechanisms involved are not fully
understood, the pancreas responds to circulating levels of
1�,25(OH)2D3 [2]. Pancreatic tissue expresses the VDR[5]
and VDR immunoreactivity in MIN6 cells appeared to be
predominantly located in the nucleus, although expression
was more diffuse than that seen in HKC-8 cells where the
VDR was found exclusively in the nucleus (data not shown).
However, evidence from other extra-renal tissues would in-
dicate that the local production of 1�,25(OH)2D3 may reg-
ulate tissue function in an autocrine or paracrine fashion
[16,20]. Initial RT-PCR, immunohistochemistry and western
blot analyses confirmed the presence of 1�-OHase in islets.

The acute application of 1�,25(OH)2D3 evoked a marked
increase in cytosolic Ca2+ in insulin-secreting MIN6 cells.
The characteristic response profile was one of oscillatory
Ca2+-transients above a mean elevated plateau. Although
the onset of the evoked rise in [Ca2+]i was relatively slow,
as compared to that evoked by the sulphonylurea, tolbu-
tamide, the changes were sufficiently rapid to suggest a
non-genomic mechanism of action. Rapid changes in Ca2+
have been seen previously in other islet models[21] and are
more likely to reflect small changes in local concentrations
of 1�,25(OH)2D3 rather than gross circulating levels which
will remain relatively constant.

We would therefore like to postulate that both the expres-
sion and activity of 1�-OHase in islets and rapid response
of insulin-secreting cells to 1�,25(OH)2D3 would indicate

that local production of 1�,25(OH)2D3 may be an important
mediator of islet function.
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